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ABSTRACT 

Optimizing resonator shapes for maximizing the 
ratio of maximum to minimum gas pressure at an 
end of the resonator is investigated numerically. 
It is well known that the resonant frequencies 
and the nonlinear standing waveform in an 
acoustical resonator strongly depend on the 
resonator geometry. A quasi-Newton type 
scheme was used to find optimized axisymmetric 
resonator shapes achieving the maximum 
pressure compression ratio with an acceleration 
of constant amplitude. The acoustical field was 
solved using a one-dimensional model, and the 
resonance frequency shift and hysteresis effects 
were obtained through an automation scheme 
based on continuation method. Results are 
presented for optimizing three types of 
geometry: a cone, a horn-cone and a half cosine- 
shape. For each type, different optimized shapes 

were found when starting with different initial 
guesses. Further, the one-dimensional model was 
modified to study the effect of an axisymmetric 
central blockage on the nonlinear standing wave. 

INTRODUCTION 

The waveform of the standing wave in an oscillating 
closed cavity is strongly influenced by the geometry of 
the cavity (resonator). Lawrenson et al. ' at Macrosonix 
C o p  first exploited the dependence for developing 
high-amplitude acoustic pressures, referred to as 
resonant macrosonic synthesis (FWS). Peak acoustic 
pressures that exceed the ambient pressure three to four 
times and ratios of maximum to minimum pressures of 
27 were observed in RMS cavities. The size of the 
demonstrated overpressure reached the level that 
required by commercial applications such as acoustic 
pump or compressor. They considered these types of 
axisymmetric shape: cylinder, cone, hone-cone and 
bulb, and appeared to find that the hone-cone shape 
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generates higher overpressure given an input power. A 
companion paper by Ilinskii et al.’ developed a one- 
dimensional time domain model for studying the RMS 
numerically. Their results confirmed the nonlinear 
standing waveform and the related characteristics such 
as shape-induced resonance hardening and softening 
observed in the experiments by Lawrenson et al.‘ Chun 
and Kim’ numerically investigated the cosine shapes in 
addition to cylindrical and conical shapes using high- 
order finite-difference approximations. They claimed 
that the half cosine-shape is more suitable to induce 
high compression ratio than other shapes. To serve 
commercial needs, such as in acoustic gas compressor 
and acoustic liquid pump, the common goal in these 
studies is to find an optimized shape for generating 
higher overpressure. However, the optimization 
procedure and result have not yet been discussed. 

In this article, we introduce the numerical schemes 
and present the results in searching for the optimal 
shape parameters that give us the highest maximum-to- 
minimum pressure ratio in each of the following types 
of shapes: cone, horn-cone and half cosine-shape. In the 
second part, we study the effect of a cylindrical central 
blockage on the RMS. 

I. GOVERNING EQUATIONS 

In this section, we describe a one-dimensional model 
for the acoustic wave field in the resonator that includes 
a central blockage. We develop our model following 
the work by Ilinksii et a1.’ for an axisymmetric 
resonator in absence of the central blockage. 

Consider the acoustic field in an oscillating 
resonator driven by an external force. As sketched in 
Fig. 1, the resonator is axisymmetric with the inner 
radius given by r=T(x), Oexel ,  where x is the 
coordinate along the axis of symmetry. The central 
blockage is also axisymmetric with the same axis of 
symmetry x, whose shape is written as ‘0 = ~ ( x )  . 
The density of the gas p, the velocity u and the pressure 
p satisfy the conservation of mass 

and the conservation of momentum 

a(t> 
au au 
at ax 0 ax 
-+u-= - - - -  

where aft) is the acceleration of the resonator enforced 
by the external force; 6 and q are coefficients of 
viscosity. The state equation is specified by that of an 
ideal gas 

P = PO(PfP0)Y’ (3) 

where po and Po are the ambient pressure and density 
respectively. The no-penetration boundary conditions at 
the two ends require that the velocity vanish at x=O and 
I. 

Following Ilinksii et al.’, expressing the variables in 
finite Fourier series in time, the equations (1) and (2) 
can be reduced to a system of Ordinary Differential 
Equations (ODES) for the Fourier coefficients of the 
velocity potential cp. defined as u = vp : 

’ @ k  ‘k 
2 2 ’  dx r -ro 

(4) 4 - x u k l - -  f k , k = l , 2  ,..., N 
I &  

where 

a = C6,e ik ‘  and 

detailed expressions for ak/ and& are the same as those 
in Ilinksii et a1.’ except that the central blockage is 
taken into account. 

akl = a,/ ( $ k  9 @k 1 f k  = f k  (Sk 1 @k 7 x)* The 

f, =-k2(r2-r:)@k +ik(r  2 2  -r0)x6, += ik[v2],  
r -ro 

6 + 47713 , co is the small signal where 6 = 
PO 

propagation speed, 0; is given by 

Dk =-(j~-1)~6,,,-h(j~-l)$,,, 

and 
N 

I=-N+k 
The no-slip boundary conditions at the two ends are 
translated to the Fourier space: ck = 0 at x=O,1. 
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After the Fourier coefficients { @k ] and { ck ] are 
obtained by solving the boundary-value problem Eq.(4), 
the velocity potential cp and the modified velocity v are 
computed from the inverse FFT. The density p is given 
by the momentum equation 

PO 
P= 

v 2  +ax-7- 
rz  -rQ ax "'3)" 1 

at 2(r2 -.,'I' 

and the pressure p can be obtained from the state 
equation p I po  = ( p  I po )' . 

11. NUMERICAL METHODS 

In this section, we describe the procedures for finding 
the optimal shape parameters so that the desired 
standing waveform can be obtained. 

To simplify our discussion, we introduce the 
following dimensionless variables 

where o is the frequency of the periodic force acted on 

the resonator, 00 = !%L is the fundamental frequency 

of a cylindrical resonator of length I . 
In this work, we assume the acceleration of the 

resonator is harmonic, 
A ( T )  = iCos(T) . The acoustic wave field in the 
resonator is determined by the acceleration amplitude 
A , the ratio of specific heats y, the attenuation 

1 

- 
coefficient G,  defined as G = n(< + 4t1'3)wQ , and the 

4PQ 
resonator oscillating frequency R, defined as = -. w 

@O 

Now, we briefly describe the method for finding the 

In the optimization process, we fix the values of the 
optimal resonator shape. 

acceleration amplitude A = 5 x loa, the gas specific 
heat ratio y=l.2 and the viscosity-related parameter 
G=0.01. Suppose the resonator shape R(X) is 
determined by a number of shape parameters, SO, SI, 
. . ., Sn. For example, a cone is given by 
R( X ) = So + S, X . The compression ratio of a 
resonator &, defined at the ratio of maximum pressure 
to the minimum pressure at the narrow end of the 
resonator 

R~(S,,S, ,_,,, s,) atX=O, (6) 
Pmin 

is a function of the shape parameters, the dimensionless 
frequency R and the history of Q (due to the existence 
of hysteresis effects). The method for obtaining R, for 
fixed resonator shape is explained later in the section. 

We first outline the optimization schemes. A quasi- 
Newton method, BFGS (Broyden-Fletcher-Goldfarb- 
Shanno4), is used for maximizing the multi-variable 
nonlinear function R, (So, SI S, ) . Since the 
evaluation of the objective function R, itself involves 
solving a nonlinear system of ODEs Eq. (4) for many 
times, the gradient information of R, required for the 
BFGS method is not available analytically and is 
derived by partial derivatives using a numerical 
differentiation method via finite differences. This 
entails perturbing each design variables, Si, in turn and 
calculating the rate of change in the objective 
function I?,(&,, Sl,,.,,Sn) . For two shape parameters, 
the optimization takes 4 to 48 hours of CPU time 
(depending on the type of the resonator shape and 
initial guess for the shape parameters) on a I.3GHz 
Athlon T-Bird PC with the Lahey-Fujitsu FORTRAN 
compiler. 

For a given shape of the resonator and the central 
blockage, the boundary value problem Eq. (4) is solved 
numerically by a Multiple Shooting Method. Because 
of the hysteresis effects, the solution is not unique near 
the resonant frequency and the Multiple Shooting 
Method will not converge unless a good initial guess of 
the solution is provided. To circumvent the difficulty, a 
continuation method is implemented: the system of 
ODEs is solved starting from a frequency R that is far 
away from the resonant frequency and the solution is 
used as an initial guess for solving the ODEs for 
increased or decreased R; the steps are repeated until 
the all branches of the solution for all values of R near 
the resonance is completed. The maximum ratio R, 
among different values of R is chosen as the 
compression ratio for the resonator. 

1.. .. 

111. RESULTS 

A. Characteristics of the standing waves 

Before we present our results on finding the optimal 
resonator's shape, we illustrate some of the important 
properties of the pressure wave in a non-cylindrical 
resonator, whose shape is described by that of a 
homcone: 
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So cosh(S,X),O I X I S, 

a + p , S ,  I X I 1  
(7) R(X) = 

where 
So = 0.028333,S1 =5.7264,S2 = 0 .25 ,~~ = Socosh(S,S2), 
a n d p  = S,S, sinh(S,S,). The shape parameters for 
the horncone are obtained from those used in the 
experiments by Lawrenson et al.' 

In Fig.2, we show the pressure waveforms at the 
ends of cylindrical resonator and the horncone 
resonator at their corresponding resonance frequencies 
for the effective viscosity e O . 0 1 ,  the gas specific heat 

ratio y=1.2, the acceleration A = W3. Throughout 
this paper, we will keep the effective viscosity C and 
the gas specific constant at these values, which are 
close to the values that used in the experiments' and our 
numerical simulations have suggested that the pressure 
waveform is not a strong function of these parameters. 
At the same size of the acceleration, the waveform at 
the narrow end of the homcone shows large variation in 
which the ratio of the maximum and minimum 
pressure, R,  , exceeds the value of 30.5. On the other 
hand, the waveform for the cylinder shows the 
formation of shocks at the resonance and the 
compression ratio Rc is below 1.32. The difference in 
the waveforms shows the strong dependence of the 
acoustic field on the resonator shapes. The graph also 
shows that the variation in pressure at the wide end of 
the horncone is much milder than that of the narrow 
end, oscillating within 23% above or below the value of 
the reference pressure p o  . 

- 

In Fig.3, we plot the ratio of the amplitudes of the 
second and the first harmonics of the pressure, 
p ,  / p l  , against the reduced amplitude of the first 

harmonic, pI / p o  , measured at one end of the cylinder 
and at the narrow end of the horncone. The figure 
shows that the second harmonic reaches its maximum at 
small amplitude of the first harmonic for the consonant 
(cylinder) resonator and the second harmonic increases 
slowly as the first harmonic increases for the dissonant 
(homcone) resonator. In other words, the energy is 
pumped into the first harmonic more for the horncone 
than that for the cylinder, creating the large-amplitude 
pressure wave in the homcone resonator. In contrast, 
the energy is efficiently absorbed by all harmonics of 
the pressure wave in a cylindrical resonator and the 
amplitudes of the harmonics reach their maximums at 
small amplitude of the pressure. 

In Fig.4, the amplitude of the first harmonic is plotted 
against the frequency of the oscillating resonator for 

- 
two different levels of acceleration: A = 2 X and 

A = loT3 . For the smaller acceleration, the pressure is 
uniquely determined at each frequency; for the larger 
drive amplitude, the pressure takes one of the multiple 
values near the resonance, depending on the direction 
of the change in frequency. The existence of hysteresis 
and hardening resonance in homcone resonators 
requires that the largest pressure compression ratio be 
obtained through an upward frequency sweep. Our 
numerical simulations show that the frequency 
increment size near the resonance must be small for the 
convergence of the Multiple Shooting method. 

- 

B. Optimal conical shapes 

In following subsections, we present results on 
optimizing resonator shapes to achieve maximum 
cornpression ratio R, at one end of the resonators. For 
simplicity and reducing computing cost, we assume the 
central blockage is absent, Le., Ro=O, and keep ratio of 
specific heats y=l.2, the attenuation coefficient G=0.01 
and the acceleration A = 5 x constant. 

A conical resonator can be written as 

Using the optimization procedure described in Sec.11 
and starting with the conical shape given in Lawrenson 
et al. I ,  we found that the compression ratio R, of a 
conical resonator reaches a maximum when the cone 
has the shape constants: S~0 .032945  and Sl=0.26800. 
The achieved compression ratio is R, =5.048 for the 
fixed values of the parameters given earlier. Recall that, 
due to hysteresis, in order to find R ,  one has to trace 
out the entire branch by incrementing the frequency R. 
The compression ratio reaches the value when the 
frequency is increased to 1.3135. The conical resonator 
studied in Lawrenson et af .  ' and Ilinksii et aL2 has 
almost identical shape S~0 .032941  and Sl=0.26800. 

for finding a local extreme of a multivariable function. 
Our numerical simulations indicate that the 
compression ratio, as a function of the shape 
parameters, have many local extrema. Starting with a 
different initial shape, we obtained another locally 
optimized conical shape with S0=0.010413 and 
S1=0.19572. When the frequency is raised to the value 
of 1.3862 by small increments, the compression ratio 
reaches the value of 5.343, which is about 6% higher 
than that for the first optimal conical resonator. In our 
optimization, we restrict the slope of the cone to be less 
than 0.268 so that the one-dimensional model used in 
this work is still valid. And, we require that the radius 
at the small end be larger than 0.01 so that real 
resonators can be built using these optimized 

R(X)=So  +SIX, for 0 I x 5 1 .  (8) 

The adopted optimization scheme BFGS is designed 
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dimensions. The two optimal conical resonators are 
shown in Fig. 5. The second cone (Fig. 5(b)) has the 
smaller narrow end and smaller slope than the first one 
(Fig. 5(a)). 

C. Optimal horn-cone shapes 
Horn-cone geometry is described by 

R, cosh(D,X) for 0 I X I X, 
a + P ( X - X , )  for X , . I X I I  

R(X) = 

where 
a = R, cosh(D,X,) a n d p  = R,D, sinh(D,X,.) 
. Rh, X ,  and Dh are positive constants. We consider that 
the connection point of horn and cone in the horncone 
is fixed at X, =0.25. We optimize the remaining two 
shape parameters so = R, and SI = D, . We found 
that the dimensions of the horn-cone given in 
Lawrenson et al.', Rh =0.028333, Dh =5.7264, are 
nearly locally optimized if we start the optimization 
with these values. For these parameters, the maximum 
compression ratio 13.10 is achieved when the frequency 
is increased to 1.467 1. In searching the optimal 
horncone design, the parameters, such as acceleration 
and specific heat ratio, are fixed at the values given in 
the beginning of Sec.111 B. Starting with a different 
initial geometry of the horncone, we can obtain a higher 
value of the compression ratio R, =17.12 when Rh 

=0.024488, Dh =5.1434. For the compression ratio, the 
frequency was increased to 1.41 10 gradually with small 
increments. Comparing with the compression ratio for 
the horncone in Lawrenson et al.' (shown in Fig.6(a)), 
the second optimal horncone (shown in Fig. 6(b)) 
improved the ratio by more than 30% at the same value 
of acceleration. Shown in Fig.6(c), the pressure 
waveform at the narrow end for new horncone design is 
a little more complicated than that for the original 
horncone given Lawrenson et al.' 

D. Optimal %-cosine shaDe 
We define a %-cosine shape as 
R(X) = So + SI (1 - cos(nX), for 0 5 X I 1.  
The parameters of the resulting optimal cosine shape 

are Sfi0.016307, S1=o.093041, shown in Fig. 7(b), 
compared with Sfi0.025, SI=0.095, the %-cosine 
dimensions reported in Chun and Kim3. For the optimal 
shape, we obtain the compression ratio Rc =10.67 at the 
frequency R=l.5683, which is about 11% better than 
that of Chun and Kim3 at the same level of acceleration. 
Under the specified conditions, we found that horn- 
cone shape is better than the cosine shape in generating 
higher compression ratio at the narrow end, which is 
opposite to the findings of Chun and Kim3. Shown in 

Fig.'l(c), the pressure waveform of the optimal %- 
cosine design is smoother than that of Chun and Kim3 

E. The effect of the central blockage 

central blockage on the pressure waveforms in a 
resonator of fixed shape. In this work, we limit 
ourselves to cylindrical central blockage, though our 
equations derived in Sec. I apply to arbitrary 
axisymmetric shape of central blockage. 

of a conical resonator described by Eq. (8) with 
S~0.032945 and S1=0.26800 for different central 
blockage radius sizes: Ro = 0,O.Ol and 0.02. These 
pressure profiles were obtained at the fixed frequency 
R = 1.3132 and for = 5 X lo4, G = 0.01, y = 1.2. 
The central blockage in this case was a simple cylinder. 
It appears that the presence of a central blockage 
reduces the amplitude of the pressure wave. However, 
Fig. 9 shows the resonant frequency of the conical 
resonator with a central blockage is shifted. Keeping 
other parameters constant, the pressure waveforms for 
the conical resonator with the cylindrical blockage of 
radius Rfi0.02, at different oscillating frequencies R = 
1.2812, 1.3068 and 1.3291, are shown in Fig. 9. 
Comparing to the pressure wave shown in Fig. 8 for a 
resonator without a central blockage, the amplitude of 
the pressure is nearly the same when the central 
blockage of radius 0.02 is included. The results indicate 
that a cylindrical central blockage in a conical resonator 
would affect the resonant frequency but would have 
negligible effect on the amplitude and overall shape of 
the pressure wave at the resonant frequency of the 
resonatorhlockage system. 

In this section, we discuss the influence of the 

Figure 8 shows the pressure waves at the narrow end 

IV. CONCLUSION 

We have performed local optimization schemes for 
finding the resonator shapes that maximize the pressure 
compression ratio at one end of the resonators. The 
dimensions for several types of optimal resonators are 
reported: cone, horncone and %-cosine shapes. For each 
type, we found there are many different designs that 
achieve local extrema. Trying with different initial 
guesses for the optimal design, we show that one can 
get as much as 30% improvement on the compression 
ratio with a fixed level of acceleration. For the shapes 
we considered, it appears that the horncone shape 
generates the highest compression ratio. Strategies for 
searching globally optimal shapes are under 
investigation. 

The effect of including a cylindrical central blockage 
in a resonator is studied in this work as well. For a 
conical resonator, it seems that the resonance frequency 
is increased when a central blockage is present and the 

5 
American Institute of Aeronautics and Astronautics 

~ 



compression ratio at resonance is not significantly 
affected . 
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Figure 1. Sketch of an axisymmetric resonator and a central blockage. 
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Figure 2. The reduced pressure p 1 p o  at the ends of a horncone and a cylinder at their corresponding 

resonance frequencies for the same acceleration A = 1 0-3 . 
- 
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Figure 3. The ratio between the amplitudes of the second and the first harmonics of the pressure wave, 
p 2  / p ,  , is plotted as a function of the dimensionless amplitude of the first harmonic reduced pressure 

p ,  / p o  . These amplitudes are calculated for the narrow end of the horncone and at one end of the 
cylinder. 

o A-0.001, upward sweep 
A-0.001, downward sweep 

0 

0 

0.6 

0 

0 

R 

Figure 4. The effect of the frequency and the amplitude of acceleration on the dimensionless amplitude of 
the first harmonic reduced pressure p 1  / p o  . The pressure is calculated for the narrow end of the horncone 

* 
for the acceleration 2 = 2 X (crosses) and A = (circles and squares). 
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Figure 5. Optimized conical shapes: the compression ratios corresponding to the shapes in (a) and (b) 
reach the values of 5.048 and 5.343 respectively. For shape parameters, see the text. 
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Figure 6. (a) The homcone shape in Lawrenson et a1.I (b) Optimized horncone shape. For shape 
parameters, see the text. (c) The pressure waveform at the narrow end for the homcone in Lawrenson et 

al.' (the solid line) and that for the second optimized horncone (the dashed line) are shown. 
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Figure 7. (a) The %-cosine shape as in Chun and Kim3. (b) The optimized %-cosine shape. (c) The pressure 
waveform at the narrow end for the %-cosine resonator in Chun and Kim3 (the solid line) and that for the 

optimized %-cosine shape (the dashed line) are shown. 
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Figure 8. Effect of the center blockage. The pressure waveforms at the narrow end of a cone resonator are 
plotted for the different radii of the central blockage: Ro = 0 (solid line), Ro=O.Ol (dashed line) and 

R ~ 0 . 0 2  (dotted line). The parameters corresponding to the plot are given by R = 1.3132, = 5 x I O 4 ,  G = 

T 

0.01, y = 1.2. 
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Figure 9. Pressure waveform at different frequencies: R = 1.2812 (the dotted line), R = 1.3068 (the dashed 
line) and R = 1.3291 (the solid line), for a conical resonator with the cylindrical central blockage of radius 

R ~ 0 . 0 2 .  The rest of the parameters corresponding to the plot are given by 2 = 5 X lW4, G = 0.01, y = 
1.2. 

10 
American Institute of Aeronautics and Astronautics 



C Software( Computer Codes) 
The computer codes for the project are included in the floppy disk attached 
to this final report. 
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